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We analyse the complete solidification from a side boundary of a finite volume of 
a binary alloy. Particular emphasis is placed upon the compositional stratification 
produced in the solid, the structure of which is determined by the competition between 
the rates of solidification and of laminar box filling by the fractionated fluid released 
at the solid/liquid interface. It is demonstrated by scaling arguments that numerical 
calculations performed at relatively low values of the Rayleigh and Lewis numbers 
may be used to describe equally well laboratory experiments previously performed at 
moderate Rayleigh and Lewis numbers and the high-Rayleigh-number, high-lewis- 
number convective regime expected during the solidification of a large magmatic body, 
provided that the balance between solidification and laminar box filling is maintained. 
This balance can be represented by a single dimensionless group of parameters. The 
boundary-layer analysis is extended to fluids whose viscosity is strongly dependent 
upon temperature and composition, and an effective viscosity is derived which may 
be used to describe both the magnitude and pattern of compositional stratification in 
the solid. 

1. Introduction 
When a multicomponent melt solidifies, the composition of the solid alloy formed 

is generally different from the composition of the liquid from which it originates. 
Consequently, the fluid in the vicinity of the solidification front is depleted in those 
components which are preferentially incorporated into the solid phase, and enriched 
in those components which are rejected. The density of the liquid is generally 
dependent upon its composition, and thus solidification is often associated with 
density differences and hence convection in the fluid (Chen & Turner 1980; Turner 
& Gustafson 1981; Huppert 1990). The convective transport of heat and chemical 
species in turn alters the solidification process itself. 

Here we investigate this interaction between solidification and convection for a 
binary fluid that is cooled from a side boundary. In particular, we focus on how 
the redistribution by convection of the two chemical components of the fluid can 
lead to spatial variations in the composition of the solid produced. This is of 
special interest to metallurgists, crystal growers and geologists, albeit for differing 
reasons. Metallurgists generally wish to suppress variations in the composition of the 
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solid because impurities in a metal casting can significantly weaken the solid alloy. 
Similarly, crystal growers seek a homogeneous product. 

Geologists, conversely, wish to interpret existing rock features to understand the 
physical processes which led to their formation. Igneous intrusions are formed by the 
crystallisation of magma within the crust and compositional stratification has been 
observed in many intrusive igneous bodies, for example the Skaergaard intrusion in 
east Greenland (McBirney & Noyes 1979). Igneous layering, as this compositional 
stratification is commonly termed, can occur on a wide variety of spatial scales, 
although the model presented here is only able to address variations on the largest 
scale, which is comparable to that of the intrusion itself. A related geological problem 
is to determine the rate at which chemically fractionated magma is transported 
convectively from the vicinity of the solidification front into the interior of the 
magma body. Numerous studies of erupted materials point to the accumulation of 
relatively light, silica-rich, magma at the roof of evolving magma chambers (see, for 
example, Hildreth 1981). 

The convection associated with solidification at a side boundary has in the past been 
investigated using three different approaches. The first group of studies is theoretical, 
and has concentrated upon the structure of the boundary-layer flow adjacent to the 
advancing solidification front. The basic similarity solution for natural convection 
at a fixed vertical plate (Ostrach 1953; Kuiken 1968) has been extended to fluids of 
variable viscosity (Spera, Yuen & Kirschvink 1982) and to cases in which convection 
is driven both by temperature differences and by compositional differences created 
at the solidification front (Gebhart & Pera 1982; Nilson & Baer 1982; Nilson 1985; 
Nilson, McBirney & Baker 1985). All these studies assume a semi-infinite fluid with 
a fixed far-field composition and temperature. An extended form of the similarity 
solution for constant-viscosity thermal convection which applies when the far-field 
fluid is stratified was derived by Worster & Leitch (1985), who used their solution to 
describe the box-filling process which occurs when fractionated fluid detrains from 
the boundary layer and intrudes into the interior of a box of finite size. 

The second approach taken has been to perform analogue laboratory experiments 
with aqueous salt solutions. Leitch (1985, 1987) and Huppert et al. (1987) crystallized 
aqueous sodium carbonate solutions from one side of a small tank, with a height 
of approximately 20 cm. Their experiments demonstrated that the compositional 
stratification in the solid is strongly influenced by the thermal and compositional 
convection in the fluid. In particular, the overall pattern of composition in the solid 
can be explained by the rate at which laminar box filling, as described by Worster 
& Leitch (1985), proceeds. However, the experiments were performed in a fluid with 
constant viscosity, which limits their immediate application to solidification in magma 
chambers. 

Finally, there have been a large number of numerical calculations of solidifying 
alloys, primarily inspired by metallurgical applications, and of which we shall review 
briefly only a few. The simplest models involve pure melts (Ramachandran, Gupta 
& Jaluria 1981; Ho & Viskanta 1984), and demonstrate how the shape of the 
solidification front is altered by the convective transport of heat within the chamber. 
These models were extended to binary melts by Thompson & Szekely (1987, 1988), 
who successfully simulated their laboratory experiments performed with aqueous 
sodium carbonate solutions. However, the cooling regime studied by Thompson 
& Szekely (1987, 1988) did not lead to a compositionally variegated solid and 
their investigations focused upon the formation of double-diffusive layers when the 
chamber was heated at the opposite sidewall during solidification. More complicated 
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models for the solidification of binary fluids, that seek to account for the presence of 
a two-phase mushy zone, have been formulated more recently, following the general 
description provided by Bennon & Incropera ( 1 9 8 7 ~ ) .  

A shortcoming common to all these numerical models is their inability to treat 
the large-Rayleigh-number, large-Lewis-number regime (Rac - 101s-1018, Le  - lo3) 
which is thought to be typical of solidifying magma chambers. This is generally blamed 
upon the limitations of present-day computers (a perennial complaint). Similarly, 
convection at such high Rayleigh and Lewis numbers cannot readily be achieved on 
the laboratory scale. Clearly a different approach is required if we are to address 
the geological regime. This paper is an attempt to bridge the gap by appealing to 
boundary-layer theory to provide scaling laws which enable us to simulate conditions 
in magma chambers with numerical calculations performed at much lower Rayleigh 
numbers. These scaling laws describe both the compositional stratification in the solid 
produced and the rate of fractionation, or box filling, in the fluid. After testing our 
scaling laws against the laboratory experiments discussed above, we are then able to 
extend our analysis to fluids of variable viscosity, which enables the constant-viscosity 
laboratory experiments to be more widely applied to geological situations. 

The plan of the paper is as follows. First, in $2, we outline the basic principles of the 
solidification of a binary alloy and describe the ‘flat interface’ approximation which 
enables us to calculate the macrosegregation in the solidified alloy. In $3, we then 
describe the governing equations and boundary conditions applicable to solidification 
of an alloy contained in a finite two-dimensional box, restricting compositional and 
thermal convection to be laminar. After a brief discussion of the expected structure 
of the double-diffusive boundary-layer flow adjacent to the solid/liquid interface, we 
perform a scaling analysis in $4 for fluids of constant viscosity to demonstrate the 
fundamental balances that determine the pattern and magnitude of compositional 
stratification in the final solid product, starting from the laminar box-filling theory of 
Worster & Leitch (1985). In 95 we test our theory by performing low-Rayleigh-number 
numerical simulations of the laboratory experiments described by Leitch (1985, 1987) 
and by Huppert et al. (1987). With an application to magmatic systems in mind, 
we then treat fluids of variable viscosity in 96 by studying the structure of the inner 
compositional boundary layer. We derive, and test, an effective viscosity which can 
describe both the compositional stratification in the solid and the total upward flux 
of fractionated fluid to the roof of the chamber. Finally, in 97, we summarize our 
main results and discuss their potential implications. 

2. Solidification of a binary alloy 
We restrict attention to a binary eutectic alloy, for which a schematic equilibrium 

phase diagram is presented in figure 1. The composition of the alloy is defined 
by a continuous scale between its two end-members A and B. The solidification 
behaviour of the alloy depends upon which side of the eutectic composition, CE, the 
fluid composition, C, lies, and hence the phase diagram has two branches, which 
correspond to alloys of subeutectic composition (C, < C < C,) and supereutectic 
composition (C, < C < C,) respectively. Fluid of eutectic composition (C = C,) 
behaves as a pure melt, crystallizing to form solid of eutectic composition. 

Without loss of generality, we shall assume that end-member B is the heavier com- 
ponent, so that compositionally heavier fluid is released at the solid/liquid interface 
when a subeutectic alloy solidifies, and compositionally light fluid is released when a 
supereutectic alloy solidifies. 
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RGURE 1. Schematic equilibrium phase diagram for a binary eutectic alloy. The composition of the 
alloy is defined on a continuous scale from pure A to pure B ,  and the two branches of the liquidus 
curve (solid lines) mark the temperature above which the alloy is totally liquid at thermodynamic 
equilibrium. The composition of the solid formed at a given temperature is given by the solidus 
curve (dashed lines). At the eutectic point, E, the alloy has eutectic composition C E .  The grey 
are lines of constant fluid density, and emphasize the greater effect upon density of compositional 
variations over thermal variations. 

If solidification is occurring under conditions of thermodynamic equilibrium, the 
temperature and composition of the fluid adjacent to the solidification front are 
constrained to lie on the appropriate branch of the liquidus curve. Given the 
interfacial temperature, the composition of the solid produced is then determined by 
the corresponding solidus curve. For C # CE,  the preferential solidification of one or 
the other end-member results in a gradual evolution of the mean composition of the 
residual melt towards the eutectic composition as crystallization proceeds. Complete 
solidification of a binary eutectic alloy can only occur if it is cooled below its eutectic 
temperature. 

To maintain local thermodynamic equilibrium in the fluid ahead of the solidification 
front, an advancing planar solid-liquid interface may become unstable (Mullins & 
Sekerka 1964), forming a two-phase mushy zone in which dendrites of B are bathed 
in interstitial melt which lies on the liquidus (see the review by Worster 1992). Behind 
the advancing mush front there is then a second, eutectic solidification front at 
which the interstitial melt has eutectic composition and crystallizes to form eutectic 
solid between the dendrites of B .  Although thermodynamic equilibrium has been 
maintained throughout, the bulk composition of the final solid is neither end-member, 
nor eutectic. 

The simplest mush model is that of Worster (1986), in which local equilibrium is 
maintained throughout the mush and the liquid just ahead of the mush is at or above 
its local liquidus temperature. In practice, however, some constitutional undercooling 
is required to drive solidification (Langer 1980), and the larger this undercooling, the 
thinner will be the mush layer (Kerr et ul. 1990~). 

In this paper, we adopt the limiting ‘flat interface’ approximation of Woods & 
Huppert (1989). Mathematically, the interface is treated as locally flat with a clean 
interface between solid and liquid. The mush layer is formally assumed to have 
infinitesimal thickness, so that the interfacial liquid has the eutectic temperature and 
composition associated with the solid-mush interface. However, the bulk composition 
of the solid formed need not be eutectic because of the presence of the thin mush, 
and is instead controlled by mass transfer within the melt. 
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X 

FIGURE 2. Schematic diagram of model fluid chamber. Solid grows from the cold boundary, x = 0, 
and at time t and height y the solid has thickness X ( y ,  t ) .  In general, the solidification front is not 
vertical because of the transport of heat by both thermal and compositional convection in the fluid. 

Our reasons for choosing this approximation are twofold. First, we wish to draw 
comparisons with existing laboratory studies, for which the best documented cases 
are those conducted with aqueous sodium carbonate solutions, for which the mushy 
layer is usually very thin (Leitch 1985; Woods & Huppert 1989). Second, this is a first 
attempt at obtaining quantitative agreement between experiment and theory, with a 
view to obtaining a more robust prediction for natural systems, and the flat interface 
is fluid-dynamically and mathematically simpler to treat. Ultimately, however, the 
appropriateness of the flat-interface approximation depends upon the system of 
interest. Woods & Huppert (1989) obtain good agreement between measurements 
and predictions of solid composition using the flat-interface approximation for sub- 
and supereutectic sodium carbonate solutions, but the approximation would not be 
expected to work nearly so well for supereutectic aqueous ammonium chloride, which 
usually forms a thick dendritic mush (Huppert 1990). The flat interface is also a 
common approximation for metallurgical applications (Elliott 1977), although its 
applicability to magmatic crystallization is still to be tested. 

3. Convection driven by solidification at a vertical boundary 
3.1. Mathematical model 

We consider a two-dimensional, rectangular box filled with a binary alloy which is 
initially liquid and uniform in temperature and composition (figure 2). At time t = 0, 
the temperature of one vertical boundary (x = 0) is instantaneously dropped and 
maintained below the eutectic temperature of the melt, so that solidification of the 
alloy immediately commences at the cold boundary. All other boundaries remain 
insulated. We assume that the advancing interface between the solid and the liquid 
phases remains locally planar, and does not become morphologically unstable. Hence 
we may describe the solid/melt interface at time t by the single-valued function 
x = X ( y ,  t ) ,  where y is the vertical coordinate. We also assume that thermal and 
physical properties, such as heat capacity, are constant within each phase, with the 
notable exception of the fluid viscosity. 

We assume that the resulting convection is laminar. For a fluid with local tem- 
perature Tl, composition CI and velocity u, the Navier-Stokes equations under the 
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and 
ac, 
__ + u . v c /  = KCV2C/, 
at 

(3.3) 

where g is the acceleration due to gravity, icC is the compositional diffusivity, and the 
fluid has dynamic viscosity p, density PI ,  thermal capacity cpl, thermal conductivity kl, 
thermal coefficient of expansion a and compositional coefficient of expansion f l .  We 
have assumed that the fluid density varies linearly with composition and temperature. 
The local fluid pressure is p and the rate-of-strain tensor e is defined by 

(3.4) 

We further assume that the fluid is incompressible, and so 

v * u  = 0. (3.5) 

The temperature in the solid, T,, is given by the diffusion equation 

in which ps, cps and k, are the density, thermal capacity and thermal conductivity of 
the solid phase. We neglect compositional diffusion within the solid phase. Although 
we allow for differing densities of the solid and liquid phases ( p s  # p ~ )  in determining 
heat capacities per unit volume, we do not explore the implications of the contraction 
(or expansion) of the alloy upon solidification. 

Initially, the fluid has uniform temperature TI = To, composition CI = CO and is 
motionless (u = 0). At the cold boundary x = 0, the solid temperature T, = Tc, and 
across the remaining boundaries (x = L, y = 0 and y = H) there is no transfer of 
energy or mass ( a T / a n  = aT,/an = aCl /dn  = 0). We may also consider the region 
0 < x < L as one half of a fluid body cooled equally from both sides, since changing 
the boundary condition at x = L from no slip to free slip has little noticeable effect 
on the following results. At the solid/liquid interface x = X ( y , t ) ,  and at the fixed 
boundaries x = L, y = 0 and y = H ,  we apply the no-normal-flow and no slip 
conditions u = 0. Note that, although the solidification front is moving, there is no 
normal flow induced there. This is because fluid elements adjacent to the advancing 
solid/liquid interface are incorporated into the solid phase and we are discounting 
expansion (or contraction). 

The solid composition is determined by the rate at which composition may be 
transported diffusively to and from the solidification front, and is given by the mass 
balance 

(3.7) 
ac 

(C,  - CE)X = Jcc-, 
an 

where X is the rate of advance of the solidification front x = X ( y , t )  and d / d n  is 
the normal derivative taken into the fluid. Compositional variegation in the solid 
can occur because of variations either in the solid growth rate, or in the diffusive 
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flux of composition from the fluid. The temperatures of the solid and liquid and the 
composition of the liquid at the solid/liquid interface are 

TI = T, = TE and C = CE at x = X ( y ,  t). (3.8) 

In addition to the mass balance, we also have a thermal balance, in which the heat 
supplied by the fluid and the latent heat released upon crystallization of fresh solid 
are balanced by the conductive transport of heat into the solid, i.e. 

(3.9) 

where 9 is the latent heat released per unit mass of solid. Although the melt may cool 
rapidly to its liquidus temperature, solidification is still controlled by the requirement 
that the latent heat released at the solidification front be removed at the cold wall 
x = 0. Note that when the temperature at the solid/liquid interface is constrained to 
be equal to the eutectic temperature, the rate of solidification is not directly influenced 
by diffusion of mass, but is controlled by the heat balance alone. 

3.2. Dimensionless boundary-layer equations 
The thermal and compositional fluxes out of the fluid depend upon the convective 
flow adjacent to the advancing solidification front. At large Rayleigh numbers, simple 
thermally driven single-component convection driven by cooling from one side is 
characterized by a thin boundary-layer flow sinking parallel to the cold wall (Ostrach 
1953). The addition of a second component to the fluid raises the possibility of 
competition between thermal and compositional effects upon the fluid density, in 
which an important role is played by the difference in the thermal and compositional 
diffusivities of the fluid (Nilson 1985). 

Before summarizing the results of Nilson (1985), we shall outline the dimensionless 
boundary-layer equations. This enables us to identify the important dimensionless 
groups which we use later in determining our scaling laws. Following Nilson (1985), 
we assume for now that the far-field fluid temperature and composition remain 
constant, that the solid/liquid interface may be considered vertical ( a X / a y  << l) ,  and 
that horizontal velocities far exceed the solid growth rate (u  >> X ) .  

We construct (primed) dimensionless variables by writing x = Lx’ ; t = (L2/Kr,)t’; 
u = ( x ~ l / L ) u ’ ;  TI = TE + A T  T’; and Cl = CE + AC (C’ - l), where A T  = (TO - 
TE) ,  AC = ICO - CEI, and ~~l = kl/plc,l.  With this rescaling for composition, 
the dimensionless eutectic composition is 1, while the dimensionless far-field melt 
composition Ck is 0 if CO < CE and 2 if Co > CE. The chamber has dimensionless 
length 1 and dimensionless height A = H / L ,  where H is the chamber height and L 
is the chamber length. Dropping primes and assuming that horizontal derivatives are 
much larger than vertical derivatives (a ,  >> ay) ,  we then obtain from (3.1)-(3.5) the 
dimensionless boundary-layer equations at the solidification front 

( U E  + v $ )  

( u g  + v % )  

( U E  + v $ )  

= -!- (2;) + R a T ( T  - 1) - Rac(C - Cm); (3.10) 
ax 

(3.11) 

(3.12) 
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au av 
ax ay 
- + - = o .  (3.13) 

Here Pr = v o / ~ T I  is the Prandtl number and Le = i c T ~ / i c C  is the Lewis number, 
where vg is the initial kinematic viscosity of the fluid. The dimensionless fluid 
viscosity is x = V / Y O .  The thermal and compositional Rayleigh numbers, RUT and 
Rac respectively, are defined by 

For fluid of constant viscosity and Pr >> 1, the structure of the laminar boundary 
layer is determined primarily by the relative direction and magnitude of the compo- 
sitional and thermal buoyancy anomalies. If compositionally heavy fluid is released 
at the solidification front, both compositional and thermal buoyancy anomalies drive 
downflow. However, if compositionally light fluid is released, counterbuoyant con- 
vection is possible (Gebhart & Pera 1971), depending upon the values of the Lewis 
number Le and of the buoyancy ratio f (Nilson & Baer 1982; Nilson 1985), where 

(3.15) 

Although the compositional buoyancy anomaly may be larger than the thermal 
buoyancy anomaly (f < l), the compositional diffusivity of the fluid is typically 
smaller than its thermal diffusivity (Le > l), which reduces the range of influence of 
the compositional forcing. The various asymptotic regimes for Pr >> 1 and Le >> 1 
are presented schematically in figure 3, following Nilson (1985). For r Le'/3 2 1, the 
boundary-layer flow is thermally dominated and exhibits unidirectional downflow. If 
r Le 5 1, compositional effects dominate and there is unidirectional upflow. For 
Le-' 5 f 5 Le-1/3, the boundary layer exhibits counterflow, with the fluid adjacent 
to the boundary rising and the fluid farther away sinking. Anticipated conditions 
during magmatic crystallization are also plotted, following Nilson et al. (1985). 
Note that for fluids such as magma, whose viscosities are strongly dependent upon 
composition and/or temperature such that they increase close to the solidification 
front, the boundaries between regimes are shifted (Nilson et al. 1985). For example, if 
the fluid released at the solidification front is more viscous than the interior fluid, the 
boundary between the thermally dominated and counterflow regimes (see figure 3) is 
shifted upwards, thus making counterflow more likely. 

4. Finite chamber, constant viscosity 
4.1. Numerical calculations 

Before evaluating their numerical solution, the transport equations (3.1)-( 3.3) were 
non-dimensionalized, as described in $3.2, and the curl taken of the momentum 
equation (3.1) to eliminate the pressure term. We solved for the flow field using 
a streamfunction-vorticity formulation, similar to that described by Thompson & 
Szekely (1988). Further details of the numerical method are outlined in the Appendix. 
Note that the dimensionless form of the interfacial heat balance introduces an 
additional dimensionless group, the Stefan number, 
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FIGURE 3. Parameter ranges for thermally dominated downflow, compositionally-dominated upflow 
and counterflow in a double-diffusive boundary layer adjacent to a vertical boundary. The shaded 
box labelled crystallization represents the range of values typical of solidification in a magma 
chamber (after Nilson 1985). 

which describes the importance of latent heat release at the solid/liquid interface. 
The thermal diffusivity of the solid phase is U T ~  = k,/p,c,,. 

For illustration, the convective flow field and fluid composition from a typical 
calculation are presented in figure 4. The initial fluid composition is supereutectic 
(CO > CE) ,  which means that the fluid adjacent to the solid/liquid interface is colder 
than the bulk interior fluid, but also relatively depleted in the heavier component. 
Initially, the buoyancy ratio r = 0.14 and the Lewis number Le = 32.5. Hence, 
in steady state, we expect counterflow in the double-diffusive boundary layer. The 
Rayleigh numbers are Rac = 3.9 x lo9 and RaT = 5.4 x 10'. During the initial 
transient ( t  5 0.003) before the steady-state flow becomes established, convection is 
thermally dominated (figure 4a) and flow is counterclockwise everywhere, with the 
exception of small, compositionally dominated regions adjacent to the solidification 
front at the top and bottom of the domain. The lower compositionally dominated 
region grows until there is a clearly visible clockwise-flowing compositional convection 
cell. As the alloy continues to solidify, the compositionally dominated convection cell 
grows at the expense of the thermal cell, until the fluid essentially loses all superheat 
(figure 4k). 

After the thermally dominated initial transient has passed, the compositionally 
light fluid rises up the solidification front and intrudes into the interior to form a 
compositionally stratified layer at the roof (figure 4h). This layer continues to grow 
until the entire fluid region is compositionally stratified (figure 41). As solidification 
continues, the ff uid composition evolves towards the eutectic at all levels. This process 
is termed laminar box-filling, and has been studied experimentally and theoretically 
by Worster & Leitch (1985). The flow reversal observed in the top-right-hand corner 
of figure 4(i) is a typical feature of free convection in a stratified fluid (Worster & 
Leitch 1985). 

The composition of the solid product (see figure 5 )  reflects the evolution of the 
fluid flow and composition fields. Much of the following explanation has also been 
provided by Leitch (1985, 1987, 1990) and Huppert et al. (1987), who observed 
similar patterns of compositional stratification in their experiments with aqueous 
sodium carbonate solutions. Let us consider a horizontal slice at any level. Moving 
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FIGURE 4 (a-f). For caption see facing page. 

away from the cold boundary (x = 0), the solid composition first increases, away from 
the eutectic. This is because the diffusive flux of composition across the quasi-steady- 
state compositional boundary layer remains approximately constant at a given height, 
with the diffusive flux away from the interface balanced by advection of composition 
towards the solidification front, while the solidification rate continues to decrease 
( X  cc t- ' /2).  Hence, from equation (3.7), the solid composition increases. However, at 
later times, laminar box filling leads to a gradual decrease in the composition of the 
interior fluid, starting from the roof down. This reduces the compositional flux into 
the solid, and the solid composition now decreases towards eutectic. The position of 
the maximum composition at a given height corresponds to the time at which the 
base of the stratified layer reaches that level. 

From any vertical slice, we see that there is a further compositional stratification 
related to the thickening of the upflowing compositional boundary layer with height 
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FIGURE 4. A typical complete freezing calculation for a supereutectic melt with light fluid release at 
the solidification front. Dimensional values of parameters are listed in table 1 and $5.2. Contours of 
the fluid streamfunction (above) and composition (see facing page) are plotted after dimensionless 
times: (a ,b)  t = 0.002; ( c , d )  t = 0.008; (e,f) t = 0.032; ( g , h )  t = 0.064; ( i , j )  t = 0.128; and 
@ , I )  t = 0.256. The contour interval for the streamfunction is 2 for ( a )  and (c) ,  and 0.5 for 
the remainder. Negative values (including zero), which represent clockwise flow, are contoured 
using solid lines, and positive values are represented by dashed lines, thereby emphasizing the 
compositionally-driven convection cell over the thermally driven cell. The contour interval for 
composition is 0.05. At early times, the flow is thermally dominated and anticlockwise. At later 
times, the flow is compositionally dominated and clockwise. 

above the floor of the chamber. At the base of the chamber, the compositional 
flux across the boundary layer is greater than at the roof for a given interior 
composition, which means that the solid composition decreases with height. This 
effect is exacerbated at later times by the compositional stratification in the fluid 
produced by box filling. Consequently, the maximum solid composition occurs at the 
base of the solid, and its position with respect to the cooling boundary is determined 
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FIGURE 5. Composition of the solid for the calculation shown in figure 4. Contours are labelled 
in wt% Na2C03 for comparison with the experimental data of Leitch (1985). Dimensionless 
composition 1 would correspond to 6.0 wt%, and the maximum solid composition is about 
13.2 wt% at the base of the tank, at x = 0.53. The cold wall is at x = 0. 

by the position of the solidification front when the base of the stratified layer reaches 
the bottom of the chamber. 

The picture is slightly complicated by the vertical dependence of the solid thick- 
ness. This results from vertical variations in the thermal flux across the combined 
thermal and compositional boundary layer. However, for most of the calculation, the 
solid/liquid interface remained approximately vertical, and the convection close to 
the interface was compositionally dominated. The compositional stratification in the 
solid is dominated in this example by the compositional convection, and the effects 
of thermal convection are secondary. 

4.2. Comparison of laminar box Jilling and solidijication timescales 
The experiments of Leitch (1985, 1987) and Huppert et al. (1987), and the numerical 
calculations described above, suggest that the pattern of compositional stratification 
in the solid is determined by the ratio of the timescales for solidification and for 
laminar box filling by the compositionally light fluid, provided that convection is 
compositionally dominated in the vicinity of the solidification front. 

To determine the solidification timescale, we assume that the heat flux from the melt 
is negligible, and that the rate of solidification is controlled by the balance between 
latent heat release at the solid/liquid interface and thermal conduction through the 
solid. If the fluid is initially above its liquidus temperature, this approximation may 
only be valid after most of the superheat in the chamber has been removed, and we 
shall return to this point later. 

For sufficiently slow solidification, the temperature profile in the solid is approxi- 
mately linear, and from the dimensionless form of equation (3.9) 

1 
s t x  - - 

X ’  
which implies a solidification timescale 

ts - St. (4.3) 

The rate at which the stratified fluid region fills the chamber is determined by the 
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upward flux of light fluid in the compositional boundary layer at the approximately 
horizontal interface between the light, fractionated fluid and the relatively heavy bulk 
fluid. If L e  >> 1 and r Le1I3 5 1, the compositional boundary layer is embedded deep 
within the thermal boundary layer and has thickness (Nilson 1985) 

where y is measured in the downstream direction for the inner compositional boundary 
layer flow. The magnitude of the upward velocity is 

112 

v - ( % )  . 

Therefore, following Worster & Leitch (1985), the timescale for box filling is 

(4.5) 

provided that the volume of the fluid region remains approximately constant (i.e. 
t F  << ts ) .  The ratio of (4.6) and (4.3), 

(4.7) 

then describes the relative rates of box filling and solidification. 
If tF - ts ,  the ratio of timescales would still scale as in equation (4.7), but would 

be shorter by a factor dependent upon t F / t S  itself. However, if tF >> ts ,  which is 
the limit of rapid solidification, box filling will occur over the solidification timescale 
as a result of the rapid reduction in the size of the fluid region at late stages of 
solidification. 

An analogous expression to equation (4.6) may be derived for the timescale for 
box filling by colder fluid which sinks in the outer part of the boundary layer and 
fills the chamber from the bottom. This thermal box-filling timescale is smaller 
than the compositional box-filling timescale by a factor r1l4Le3l4 >> 1 when there 
is an inner compositionally driven boundary layer (r Le  2 1, Le  >> 1). Under these 
circumstances the thermal flux from the fluid may indeed be neglected over the 
compositional box-filling timescale. 

The ratio (4.7) describes the magnitude of the compositional stratification in the 
solid, as well as its pattern. The dimensionless flux of composition from the fluid into 
(or out of) the solid at the solid/liquid interface is given by 

5 ry A1/4Le3/4Ra-'/4St-' 
C tS 

where C i ( X , y / A )  is the far-field composition at height y when the solidification front 
is at x = X ,  and which is also determined by tF/tS. Now, from equation (3.7), we see 
that the difference ACs = IC, - CEJ between the solid composition and the eutectic 
composition is 

FC AC, - 7. 
X 

Therefore, substituting from (4.2) for X and (4.4) for 6c, we obtain 

(4.9) 

(4.10) 
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Equation (4.10) confirms that, before box filling occurs, the absolute difference 
between the solid composition and the eutectic composition increases with dis- 
tance away from the cold wall and decreases in the downstream direction, as ob- 
served in the experiments of Leitch (1985, 1987) and Huppert et al. (1987), and 
in the numerical calculations reported above. As the fractionated fluid gradually 
fills the chamber, the compositional difference between the far-field fluid and the 
fluid at the solid/liquid interface, ICi - C E ( ,  is reduced and the solid composition 
approaches the eutectic (ACs -, 0). The widening of the compositional bound- 
ary layer in the downstream direction leads to vertical stratification in the solid 
even when the bulk fluid is homogeneous. The solid towards the base of the 
chamber becomes enriched in the heavy component, regardless of the direction of 
boundary-layer flow, as long as it is compositionally dominated or counterflow- 
ing. 

The above scaling analysis has important implications for the modelling of experi- 
ments and natural systems characterized by Rayleigh numbers and Lewis numbers too 
high for present-day computational resources. Laboratory experiments at moderate 
Lewis and Rayleigh numbers (Le - lo2 - lo3, Rac - 10" - 10") can be performed 
to study the solidification of magma chambers at much higher values (Le  - lo4 - lo6, 
Rac - 1015 - and numerical calculations performed at even lower Lewis and 
Rayleigh numbers may be employed to model both (see figure 6), provided that the 
combination of parameters 

(4.11) 

is the same in all three cases, and provided that our model assumptions remain 
valid. Larger values of P correspond to relatively slow box filling, owing to rapid 
solidification ( S t  << l), weak convection, a thin compositional boundary layer (Le  >> 
l), or a tall chamber geometry ( A  >> 1). Under these circumstances, the fluid is 
largely homogeneous and the compositional stratification in the solid is determined 
by boundary-layer thickening and by the gradual reduction in the growth rate of 
the solid. For P << 1, box filling is rapid and the fluid compositional gradually 
approaches the eutectic as solidification proceeds. The solid composition reflects the 
fluid composition and approaches the eutectic as one moves away from the cold 
wall. In the following section we test our scaling analysis by simulating experiments 
reported by Leitch (1985, 1987) and Huppert et al. (1987). 

Before proceeding, however, we note two caveats. First, the above scalings are valid 
only if the solid growth rate X << u, the horizontal velocity in the compositional 
boundary layer. Otherwise, the structure of the compositional boundary-layer flow 
is determined by a balance between the rates of solidification and compositional 
diffusion. The incompressibility condition (3.13) implies that u - u&/y ,  and the 
solidification rate X - ( S t X ) - ' .  Hence, substituting from (4.4) and (4.5) for 6~ and 
v respectively, we require P << X for the above analysis to be valid. Quantitative 
agreement between experiments and numerical calculations should therefore only 
be expected when P << 1, although the qualitative description of the pattern of 
compositional stratification in terms of t F / t S  remains appropriate. Second, the 
ratio of thermal to compositional box-filling timescales is preserved under the above 
rescaling, but increases when the Lewis number is reduced. This means that the 
duration of thermal convection will be extended in the numerical calculations, which 
explains why in the above model calculation a small thermal convection cell remained 
until solidification was almost complete. 
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FIGURE 6. Contours of the parameter P ,  as defined by equation (4.11), for a range of values 
of the compositional Rayleigh number Rac and LeSt-4/3A'/3, where Le is the Lewis number, 
St is the Stefan number and A = H / L  is the aspect ratio of the chamber. The parameter 
P represents the ratio of timescales for laminar box filling and for solidification. Small values 
of P correspond to rapid box-filling rates or slow solidification, and result in stronger vertical 
compositional stratification in the solid. Shaded areas represent areas typical of magma chambers 
(dimension - 1 km), the laboratory experiments of Leitch (1985, 1987) and Huppert et al. (1987), 
and the numerical calculations presented in this paper. 

5. Comparison with laboratory experiments 
A series of laboratory experiments were performed by Leitch (1985, 1987) and 

Huppert et al. (1987) to study the compositional stratification in a binary alloy cooled 
from one side. Aqueous sodium carbonate solutions were completely frozen in Perspex 
chambers, approximately 20 cm long each side, by cooling from one sidewall, with all 
other boundaries insulated. Each freezing experiment took on the order of 24 hours, 
after which the solid crystalline block was cut up into pieces and the composition of 
each piece measured. 

The morphology of the solid/liquid interface during the experiments depended 
chiefly upon the major component crystallizing out. For subeutectic solutions, the 
major crystalline product was ice, and the solidification front was fairly smooth. 
However, for supereutectic solutions, large, faceted hydrated sodium carbonate 
(Na2CO3.10H20) crystals formed, and the solid/liquid interface was distinctly ir- 
regular (Leitch 1985). Nevertheless, for the supereutectic experiments the boundary 
region across which the larger crystals protruded was only of the order of millimetres 
thick (Leitch 1987), with the exception of one set of experiments reported by Huppert 
et al. (1987), in which a thick mush formed at the base of an initially stably stratified 
tank. 

To make a comparison between these experiments and the above scaling analysis, 
we select two examples for which most data about the composition of the solid 
have been published. Both come from Leitch (1985), although the supereutectic 
experiment is also described by Huppert et al. (1987) and Leitch (1990). Similar 
features in experiments with metal alloys have also been described by Hebditch 
(1975). Values for the physical constants, which are presented in table 1, suggest that 
the compositional Rayleigh numbers for the two experiments were approximately 
2.7 x lo9 and 3.9 x lo9 respectively, and the Lewis number Le - 330 in both cases. 



118 R. A. Jarvis and H.  E. Huppert 

Quantity Aqueous Na2C03solution Magma chamber Units 

3.9 x 103 
1.9 x 103 
1.3 x 10-7 
9.0 x 10-7 

1.0 x 103 

2.0 x 10-4 

2.3 x 
4.0 x 

3.1 x lo5 

1.0 x 10-2 

1.3 x 103 
1.3 x 103 
5.0 x 10-7 
5.0 x 10-7 

2.5 x 103 
5.0 x 105 
2.5 x 10-5 

10-2 - 10 
10-9 - 10-12 

2.5 x lo2 

J kg-' "C-' 
J kg-' "C-' 
m2s-' 
m2s-' 
m2s-' 
m2s-' 
kg m-3 
J kg-' oc-I 
(wt% Na~C03)-' 
kg m-3 

TABLE 1. Physical constants for aqueous sodium carbonate system at O'C, obtained from various 
sources, including Leitch (1985), Woods & Huppert (1989) and Weast (1971), and for magma 
chambers (Nilson et al. 1985). For the magma chamber, a characteristic density change Apc is listed 
rather than P, the coefficient of expansion due to variations in composition. An equivalent value 
for /I is given by Apc/poAC. 

For each numerical simulation, we divided the experimental values of the Rayleigh 
numbers by a factor of lo3 and the Lewis numbers by a factor of 10, in accordance 
with the above scaling analysis. 

5.1. Subeutectic solution 
In this experiment, the fluid initially had uniform temperature TO = 22 "C and 
composition CO = 4.0 wt% Na2CO3 (for an aqueous sodium carbonate solution, 
CE = 5.98 wt% Na2C03, TE = -2.1 "C). The cold wall temperature was reduced 
from -10 "C to -36 "C over a period of about 5 hours (Leitch 1985), and this was 
explicitly accounted for in the numerical calculations. Contours of solid composition 
are shown in figure 7 for a slice taken in the (x,y)-plane, midway between the two 
endwalls. For a subeutectic solution, the fluid released at the solid/liquid interface 
is enriched in the heavy component (Na2C03), and therefore sinks. Box filling of 
fractionated fluid occurs from the floor of the chamber upwards and there is a 
minimum in solid composition (2.0 wt% Na2C03) approximately 12 cm from the 
cold boundary, at the roof of the tank. 

To simulate this experiment, it was first necessary to neglect the thermal flux 
from the fluid. Leitch (1985) reports that initially, in the experiment, there was no 
solid growth towards the top of the cold boundary, owing to the advection of warm 
fluid towards the boundary, and that growth only commenced there when the fluid 
superheat had been substantially reduced. However, equation (3.9) always implies 
solid growth at early times, whatever the thermal flux from the fluid, because the heat 
flux through the solid is initially infinite. In response to the large thermal flux, the 
solid simply grows very slowly, thus creating, close to the cold boundary, a strong 
minimum in solid composition which is an artefact of the crystallization model (Jarvis 
199 1). Therefore, in this particular numerical calculation, thermal effects in the fluid 
have been removed entirely by setting the thermal Rayleigh number to zero, and by 
neglecting the heat flux from the melt in equation (3.9). 

The calculated solid composition for the above experimental conditions is presented 
in figure 8. The calculation was stopped when only 93% of the alloy had solidified 
because convergence of the numerical scheme was becoming very slow. The final 
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FIGURE 7. Contour plot of the solid composition for a complete freezing experiment with a 
homogeneous subeutectic aqueous sodium carbonate solution (from original data kindly provided 
by A.M. Leitch). The contours are labelled in wt% Na2C03. The solid composition was measured 
by cutting the solid up into sections, allowing them to melt and measuring the refractive index of 
each sample. The solid block has length 16 cm and depth 15 cm. 
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FIGURE 8. Calculation of the complete freezing of a homogeneous subeutectic aqueous sodium 
carbonate solution. Thermal effects in the fluid have been removed by setting RUT = 0 and by 
neglecting the heat flux from the liquid. As far as possible, physical conditions were taken from 
Leitch (1985) (see table l), although the Rayleigh numbers were decreased by a factor of lo3 and 
the Lewis number by a factor of 10, in accordance with the scaling analysis presented in w.2. 
Contours labelled as for figure 5. 

solid formed would have had eutectic composition. The pattern of compositional 
stratification is very similar to the experimental result (figure 7), with a minimum 
composition of 1.8 wt% Na2C03 just over 10 cm from the cold wall. Note that, even 
if the experiments were modelled precisely, the minimum solid composition calculated 
would still be below the minimum measured composition because finite-sized blocks, 
with sides of approximately 2 cm, were sampled in measuring the composition of the 
solid grown in the laboratory. This numerical calculation may be considered strong 
support for the scaling arguments outlined in §4. 
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FIGURE 9. Contour plot of the solid composition for a complete freezing experiment with a 
homogeneous supereutectic aqueous sodium carbonate solution (from original data kindly provided 
by A.M. Leitch). The contours are labelled in wt% Na2C03 and the solid block has length 16 cm 
and depth 15 cm. 

5.2. Supereutectic solution 

In the second experiment, the initial temperature TO = 18 "C, the initial composition 
Co = 8.8 wt% Na2C03, and the cold boundary temperature was reduced from -10 "C 
to -36 "C over a period of about 2 hours (Leitch 1985). The measured solid 
composition, also taken midway between the two endwalls, is shown in figure 9. The 
maximum solid composition is about 17.5 wt% Na2CO3, approximately 4 cm from 
the cold boundary at the base of the tank. 

The corresponding numerical simulation is the one described previously in 94.1. 
Figure 4 shows the evolution of the flow field and fluid composition, while contours 
of solid composition are presented in figure 5. Again there is a strong qualitative 
agreement between experiment and calculation, but in constrast to the subeutectic 
case, the quantitative agreement is quite poor. The calculation places the maximum 
in solid composition too far from the cold boundary, about 8.5 cm away, and the 
maximum composition is only about 13.2 wt% Na2CO3. 

The most likely reason for the quantitative disagreement is the assumption of 
laminar flow in the compositional boundary layer. Leitch (1985, 1987), in describing 
the same experiments, notes that there is a large disparity between the box-filling time 
observed in the laboratory and that predicted by classical laminar boundary-layer 
theory, and suggests that in this experiment the boundary-layer flow was not laminar, 
but mildly turbulent, owing to the release of small, compositionally buoyant plumes 
from the upper surfaces of protruding Na2C03.10H20 crystals. This increases the 
upward flux of fractionated fluid, thereby shortening the box-filling timescale. 

Comparison between experiments and theory therefore provides mixed results. 
While the scaling theory is supported where experimental conditions are favourable 
(smooth, planar solidification front), albeit over a rather small range of Lewis and 
Rayleigh numbers, it is apparent that the morphology of the solid/liquid interface has 
a strong role to play under less favourable circumstances, such as the supereutectic 
aqueous sodium carbonate freezing experiments described above. 



SolidiJcation of a binary alloy of variable viscosity 121 

6. Finite chamber, variable viscosity 
We now extend the scaling theory of 94 to fluids whose viscosity is strongly 

dependent upon their temperature and composition. We restrict ourselves to low- 
buoyancy-ratio, high-Prandtl-number, high-Lewis-number systems, for which the ther- 
mal boundary layer is embedded deep within the viscous boundary layer, and the 
compositional boundary layer deep within the thermal boundary layer. We shall 
demonstrate that it is possible to determine a suitable effective viscosity which de- 
scribes both the rate of growth of the stratified layer of fractionated fluid by box 
filling, and the pattern and magnitude of compositional stratification in the solid. 

6.1. Structure of the inner compositional boundary layer 
For P r  >> 1 and Le >> 1 (provided that r Le’I3 6 l), a similarity solution exists 
for the inner compositional boundary layer, within which the dominant balance is 
between viscous forces and buoyancy forces (Kuiken 1968; Spera et al. 1982; Nilson 
et a2. 1985). If we write 

and .define the similarity variable, 4, and streamfunction, y, by 

q = x/d and y = Vd f(q), (6.2) 

then the boundary-layer equations reduce to the ordinary differential equations 

C” = 3 f C‘, (6.4) 

f(0) = f’(0) = 0 ;  C(0) = 1; (6.5) 

f”(co) = 0; C(00) = 2, (6.6) 

with boundary conditions 

and 

in writing which we have assumed that the melt is supereutectic (CO > C E ) ;  however, 
the following results apply equally to subeutectic melts. The boundary condition 
f”(co) = 0 was first derived by Kuiken (1968), and is applicable to high-Prandtl- 
number, high-Lewis-number fluids. In equation (6.3), f = F/po is the dimensionless 
viscosity at the outer edge of the compositional boundary layer, and represents 
the viscosity variation across the thermal boundary layer alone. Within the inner 
compositional boundary layer, the dimensionless temperature is equal to the boundary 
temperature (T = 0), and x / f  is a function of composition only. 

Typical solutions of (6.3)-(6.6) are presented in figure 10, for the simple exponential 
viscosity law 

2-c 
x = f ( $ )  3 (6.7) 

which corresponds to a dimensionless viscosity xw at the vertical boundary q = 0. The 
similarity solutions are the same as those obtained by Spera et al. (1982) and Nilson 
et al. (1985), and are calculated using the Runge-Kutta method, combined with a 
Newton-Raphson shooting method to determine the unknown conditions f”(0) and 
C’(0). 
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FIGURE 10. Typical similarity solutions for the inner compositional boundary layer for a number of 
different viscosity variations x w / f .  In (a), the upward velocity -f'(q) is plotted, and in (b)  we show 
the composition anomaly, 2 - C(g). The effect of increasing the viscosity contrast is to weaken the 
upflow and to move it away from the vertical boundary, g = 0. 

A suitable effective viscosity for variable-viscosity convection is the viscosity at 
which the same total upward compositional flux would be achieved if the fluid viscosity 
were constant. From equations (6.3) and (6.4), the total upward compositional flux is 

co 

Fu  = -V6 1 (2 - C)f' dq = iV6  C'(O), 

and by conservation of mass, the compositional flux into the solid is simply 

Hence, from the definition (6.1) for 6 and V ,  we find that both the box-filling rate 
and the solid composition, ACs, are proportional to ( R a c / ~ ) ' / ~ .  Therefore, if CA is the 
value of C'(0) when x w / f  = 1, the effective viscosity should be 

(6.10) 

and the effective Rayleigh number Rac, = Rac/Xeff. It is useful to write the effective 
viscosity, x e f ,  as a power law, 

(6.11) 

where the variable exponent satisfies 0 < y < 1. When y is small, the increase 
in viscosity associated with compositional variations close to the wall is relatively 
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FIGURE 11. Effective viscosity variation, xef f / f ,  plotted (a) as a direct function of the viscosity 
variation x w / f  across the compositional boundary layer; and (b) as a power of x w / f  (see equation 
(6.11)). The solid lines represent the effective viscosity given by matching the total upward 
compositional flux, while the dashed lines are obtained by matching the maximum upward velocity 
within the compositional boundary layer. 

unimportant, compared with the effect of temperature, and the upward compositional 
flux is determined by the lower viscosity at the outer edge of the inner compositional 
boundary layer. However, when y is close to unity, the larger viscosity xw dominates. 

In figure 11, we plot xef / f  and the exponent y as functions of x w / f .  Figure 11 
highlights the difference between our derived effective viscosity (solid lines) and that 
chosen by Nilson et al. (1985), who based their effective viscosity upon the maximum 
upward velocity within the compositional boundary layer (dotted line) and deduced 
that y may be set equal to the constant value t. From figure l l (b)  we see that y = 3 
indeed describes the maximum upward velocity for a viscosity variation of the order 
of lo6 across the compositional boundary layer, but that it is weighted too much 
towards the lower viscosity 2 to provide an appropriate description of the total upward 
flux of composition. For viscosity variations up to about lo9 across the compositional 
boundary layer, we find instead that the effective viscosity should be weighted towards 
the larger viscosity ( y  > t ) ,  rather than the lower viscosity. As a result, the transport 
of fractionated fluid in a magma chamber is likely to be substantially diminished by 
the increase in viscosity associated with increased silica content and crystallinity close 
to the walls of a solidifying magma chamber, as suggested by Spera et a2. (1982). For 
example, the expected box-filling rate predicted by Nilson et al. (1985) for a viscosity 
increase of lo6 across the compositional boundary layer should be reduced by an 
order of magnitude. 
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Run Rayleigh Thermal Compositional Effective 
number variation variation Rayleigh number 

P - Rae 
PO 

106 
106 
106 
1 0 6  

106 
6.31 x 104 

105 
2.51 x 104 

33.3 
10 
1 
1 

1 
1 
1 

15.85 

- P W  

P $ ( E)o'6 Rac 

3 
10 

100 
1 
1 
1 

10 
1 

1.55 x 1 0 4  
2.51 x 104 
6.31 x 104 

6.31 x 104 
6.31 x 104 
2.51 x 104 
2.51 x 104 

106 

TABLE 2. Summary of numerical calculations performed for fluids of variable viscosity, with Rayleigh 
numbers based on the initial viscosity, po,  of the fluid. The ratios P / p o  and p W / p  respectively describe 
the increase in viscosity across the thermal and compositional boundary layers, where pw is the 
fluid viscosity at the solidification front. For all calculations, S t  = 5 ;  Pr = 10; Le = 50; A = 0.9375. 
The initial buoyancy ratio r = RaT/Rac is equal to 0.1 in all cases. For a fluid with St  = 0.5 
and Le = 5 x lo3, the same calculations apply to Rayleigh numbers a factor of 10'' greater. The 
effective Rayleigh number, Rac/Xef, is determined from the solutions to the inner compositional 
boundary layer outlined in 46.1, and is the same both for Runs 3, 5 and 6 and for Runs 2, 7 and 8. 

6.2. Numerical calculations 
To test the above analysis, a number of calculations were performed with a variety 
of Rayleigh numbers (based on PO), and with differing viscosity differences across the 
thermal and compositional boundary layers (see table 2). The reader is referred to the 
Appendix for details of the numerical method. In comparing our results, we choose 
the effective viscosity by setting y = 0.6 in equation (6.11). This gives lower viscosities 
than the theoretical result (6.10) (see figure 11) for the range of viscosity variations 
studied here, but is still weighted in favour of the larger viscosity. We simply find that 
we obtain better agreement between calculations with this choice. The disparity is 
mainly due to the effect of the moving solid/liquid interface upon the boundary-layer 
structure. In the laboratory experiments and numerical calculations, the parameter 
P - 0.12 at least, while in magmatic situations, where P can be much smaller, the 
above scaling analysis will work much better. With y = 0.6, the effective Rayleigh 
number, R a c / x e f ,  is the same for each of the sets of Runs 3, 5 and 6, and 2, 7 and 8. 

Contours of fluid composition are plotted after a dimensionless calculation time 
t = 0.2 for Runs 1 4  in figure 12, in which the solid region is shaded. The dimensionless 
effective viscosity, x e f ,  decreases from Run 1 to Run 4. Consequently, the box-filling 
rate is greatest for Run 4, and least for Run 1. In addition, the compositional boundary 
layer adjacent to the solid/liquid interface becomes noticeably thinner as the effective 
viscosity decreases, even though the total upward flow rate has increased. In Runs 
1-3, the viscosity increases from the interior towards the solid/liquid interface by a 
factor of 100 in all three cases, but the viscosity is essentially thermally determined for 
Run 1 (figure 12a), and is wholly compositionally determined for Run 3 (figure 12c). 
This demonstrates the greater importance of the thermal viscosity variation upon the 
box-filling rate. 

In figure 13, the vertical velocity profile is shown at the mid-height y = 0.5 for 
the same four calculations. The strength of the upflow when there is no viscosity 
increase towards the solid/liquid interface (Run 4) is only about twice as great as 
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RGURE 12. Contours of liquid composition for ( a )  Run 1; ( b )  Run 2; (c) Run 3 and ( d )  Run 4 after 
a dimensionless time t = 0.2; the contour interval is 0.05. The effective viscosity xef decreases from 
(a) to (d ) .  Parameter values are listed in table 2. The initial far-field viscosity, PO, is the same in 
all four cases, and fluid viscosity at the wall, pw is the same for Runs 1-3. In Run 4, viscosity is 
constant. Note that the compositional boundary layer at the solid/melt interface becomes thinner 
as xef decreases. 

when the viscosity increases by a factor of 100 owing to compositional differences 
alone (Run 3). However, the upflow is reduced by over an order of magnitude if 
the same viscosity difference is predominantly thermally determined (Run 1). This 
is because the compositional boundary layer is entirely contained within the high- 
viscosity region. 

The solid composition for Runs 1-4 is presented in figure 14. For each calculation, 
two curves are plotted, the upper curve being the solid composition along the base 
of the chamber and the lower curve being the solid composition along the roof. 
The degree of vertical compositional stratification in the solid is represented by the 
difference between the upper and lower curves for each calculation. This stratification 
is a decreasing function of the effective viscosity x e f ,  which is consistent with the 
variations in compositional boundary-layer thickness observed in figure 12. The rapid 
decrease in solid composition close to the far boundary, x = 1, for Run 4 reflects 
the relatively rapid box filling observed in that case, and if the calculation were 
continued, the solid composition would equal the eutectic composition at the far 
boundary. 

Finally, in figure 15, we compare the solid composition at heights y = 0, y = 0.5 
and y = 1 for Runs 3, 5 and 6 (figure 15a) and Runs 2, 7 and 8 (figure 1%). The 
agreement within each set is reasonably good, with the single exception of the lower 
curve for Run 3 (figure 15a), which describes the outflow region at the roof of the 
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FIGURE! 13. Upward velocity, u, plotted against distance x from the solidification front at the 
mid-height y = 0.5 after a dimensionless time t = 0.2 for Run 1 (solid line), Run 2 (dotted line), 
Run 3 (dashed line) and Run 4 (dot-dashed line). As the effective viscosity xeff decreases from Run 
1 to Run 4, the influence of the compositional buoyancy forcing over the thermal buoyancy forces 
increases, which further enhances the upward flux of light fractionated fluid. 
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FIGURE 14. Dimensionless solid composition, C,, plotted against distance x from the cold wall for 
Run 1 (solid line), Run 2 (dotted line), Run 3 (dashed line) and Run 4 (dot-dashed line). For each 
run, two curves are plotted: the upper curve is the solid composition at the base, y = 0, while the 
lower curve is the solid composition at the roof, y = 1. The dimensionless eutectic composition is 
1 and the initial melt composition is 2. The effective viscosity xe/r decreases from Run 1 to Run 4, 
and consequently the degree of vertical compositional stratification is greatest for Run 4. 

X 

chamber. This is not surprising as the boundary-layer analysis in $5 is not appropriate 
to this region. The curves for Runs 5 and 6 (figure 15a) are almost indistinguishable, 
as are those for Runs 2 and 7 (figure 15b), which confirms our assumption that the 
region of upflow lies entirely within the thermal boundary layer for the regime studied 
here. Taken together, the two sets of runs offer good support for the scaling analysis 
in $6.1, despite the slight disparity between the values for the effective viscosity given 
by equation (6.10), and the values given by substituting y = 0.6 into equation (6.11). 
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FIGURE 15. Dimensionless solid composition, C,, plotted against distance x from the cold wall for 
(a) Run 3 (solid line), Run 5 (dotted line) and Run 6 (dashed line); and (b)  Run 2 (solid line), Run 
7 (dotted line) and Run 8 (dot-dashed line). Within each set of runs, the effective Rayleigh number 
as given by equation (6.11) with y = 0.6 is the same (see table 2) .  Three curves are plotted for each 
run, corresponding to the roof (y = i), mid-depth ( y  = 0.5) and the floor ( y  = 0). 

7. Discussion 
We have conducted a theoretical study of the compositional stratification in a 

solid grown from a liquid binary alloy by cooling at one sidewall. Our analysis 
is limited to fluids for which convection is laminar, and for which convection is 
compositionally dominated. By comparing the timescales for laminar box filling and 
for solidification, we are able to simulate directly experiments conducted at relatively 
high Rayleigh numbers, with fluids which have high Lewis numbers, by performing 
calculations at significantly lower Rayleigh and Lewis numbers. In the same manner, 
we are able to provide a model for solidification within a large magma chamber 
by extending our analysis to fluids whose viscosity is strongly dependent upon both 
temperature and composition. This represents a significant advance, despite the 
apparent simplicity of the scaling approach, because we are able to form a bridge 
between numerical calculations (which currently can only be performed over a limited 
parameter range), laboratory experiments and the expected conditions in a solidifying 
magma chamber. 

We have tested our scaling theory by performing numerical calculations, including 
some direct comparisons with experiments reported in the literature. Despite some 
uncertainty concerning experimental conditions, agreement between our calculations 
and the experimental results is strong when the solid/liquid interface may reasonably 
be considered to be locally planar. Agreement is noticeably worse when the size 
of individual crystals becomes comparable to the characteristic thickness of the 
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compositional boundary layer and turbulent plumes are released from the upper 
surfaces of the crystals (Leitch 1985). This demonstrates the fragility of theoretical 
and experimental results for laminar convection at a smooth vertical wall when they 
are applied to real systems. 

One of our most important approximations has been that the advancing solid/liquid 
interface remains locally planar and that there is no morphological instability. It is 
not clear at present how appropriate this approximation is to crystallizing magmatic 
systems. An alternative end-member description is one in which binary alloys crys- 
tallize by forming two-phase regions, or mushes, in which interstitial fluid coexists 
in approximate thermodynamic equilibrium with a crystalline matrix. For example, 
many solidifying metallic alloys and aqueous salt solutions exhibit dendritic growth. 
Theoretical models for mushes have been proposed by Hills, Loper & Roberts (1983), 
Huppert & Worster (1985) and Worster (1986), and predictions made for the solid 
composition for the one-dimensional situation of a stagnant binary alloy cooled from 
below (Worster 1986), or a turbulently convecting fluid cooled from above (Kerr et 
al. 1990b). There have also been numerical calculations of convection in a porous 
mush driven by cooling from one side (Bennon & Incropera 1987b; Beckermann 
& Viskanta 1988; Voller, Brent & Prakash 1989). Scaling analysis similar to that 
described in $4.2 has been performed for porous flow by Lowell (1985), who suggests 
that the dimensionless box-filling timescale for a crystallizing mush layer should be 
proportional to K-'/2Rac1/2Le1/2.  This would enable us to describe the compositional 
stratification in the solid in terms of the balance between solidification and box-filling 
timescales, but an accurate quantitative prediction for the solid composition is no 
longer possible. This is because solidification occurs over a finite interval when a 
mush is formed: between the time at which the mush front reaches a given position 
from the cold boundary and the time at which the eutectic front arrives at the same 
point. Hence the composition of the final solid product reflects some average of fluid 
conditions and is not an instantaneous snapshot of the flow structure. 

Meanwhile, for the present model, direct application to magma chambers provides 
further challenges. Foremost among these is that magmas are not simple binary alloys, 
but are multi-component systems, which complicates the boundary-layer structure 
considerably. In particular, the exchange of water across the solidification front 
requires detailed consideration because of its potential to reduce significantly the 
viscosity of the magma close to the solid/liquid interface (Nilson et al. 1985; Spera, 
Oldenburg & Yuen 1989). In addition, we have implicitly assumed a rather passive 
role for individual suspended crystals ahead of the solidification front. Typical 
calculations of magma viscosity below liquidus temperature include a contribution 
due to suspended crystals (e.g. Shaw 1972). Correct treatment of the region close 
to the solidification front therefore requires a sound description of the motion of 
these free crystals, and a determination of when such a partially solid region behaves 
rigidly. 

In summary, it is imperative that more extensive use of scaling analysis be made 
to guide numerical modelling in the future. It may be that current models adequately 
represent the magmatic and metallurgical regimes because of the common practice 
of reducing Rayleigh numbers and Lewis numbers in simulations for reasons of 
numerical convenience. Such success, however, would be entirely fortuitous. Our 
analysis demonstrates that a wide range of styles of compositional stratification are 
possible, depending upon the value of the parameter P ,  and that care must be taken 
to ensure that the correct regime is being modelled. 
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Appendix. Numerical methods 
The numerical methods outlined below are in general the same as those used by 

Thompson & Szekely (1988) in a similar fluid-dynamical study. The reader is also 
referred to Peyret & Taylor (1983) for details of the hydrodynamic method, and 
Crank (1984) for a description of the boundary-immobilization technique. Here, we 
shall describe our numerical method in only the barest terms, concentrating on those 
aspects, such as our treatment of variable vorticity, which are special to the present 
investigation. 

First, the governing equations described in 53.1 are non-dimensionalized using the 
scaling outlined in $3.2. To eliminate the pressure term, the curl is taken of the 
dimensionless form of (3. l), leading to a streamfunction-vorticity formulation. The 
full advection-diffusion equations for the fluid temperature and composition differ 
from equations (3.11) and (3.12) only in the reinstatement of the partial derivative in 
t on each left-hand side, and the second partial derivative in y on each right-hand 
side, while the momentum equation (3.1) becomes the vorticity equation 

where 

Here, y is the streamfunction and o = k - V  A u is the sole non-zero component 
of vorticity. The boundary condition for the streamfunction is simply y = 0, while 
the boundary conditions for the vorticity, o, are derived from the no-slip condition, 
u = 0. Following Peyret & Taylor (1983), we write 

(A 2) V l p = - o .  2 

for the region close to the boundary y = 0. The condition u = 0 implies that 
y ( x , O )  = y, (x ,O)  = 0, and hence from (A2), the boundary vorticity, o ( x , O ) ,  may 
be estimated to leading order from the (assumed known) streamfunction at the first 
interior grid point by writing 

In a similar manner, we may derive the boundary vorticity from the no-slip condition 
at the remaining fluid boundaries y = 1, x = X and x = 1. Higher-order forms of 
(A 4) typically led to numerical instability. 

Potentially, variable viscosity can cause difficulties when attempting to find nu- 
merical solutions. These difficulties arise from the possibility of source terms, such 
as oV2x,  appearing on the right-hand side of the vorticity equation. Here, we have 
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avoided such problems by writing the curl of the viscous dissipation as the sum of 
the final two terms in (A 1). In solving (A l), the term V2(xo)  is not expanded, but is 
discretised as it is written. The final term in ( A l )  still provides a source term in the 
vorticity, but it is simple to show that for the problem studied here it is much smaller 
in magnitude than the buoyancy terms outside a viscous boundary layer of thickness 
6, << L, and that it is smaller than V2(xo) by a factor of order (S,/L)* within the 
viscous boundary layer. Hence the final term may be neglected in the numerical 
calculations. The small magnitude of the neglected term has also been confirmed a 
posteriori. 

The dimensionless transport equations can be transformed further by mapping 
each of the irregularly shaped solid and liquid regions onto the domain [0,1] x 
[0,1], a technique known as boundary immobilization (Crank 1984). In return for 
simplifying the calculation domain, additional terms enter into the transport equations. 
These terms can be divided into two classes: interface curvature terms, which are 
proportional to X ,  and X,,, and pseudo-advective terms, which are proportional to 
X, .  Many workers (e.g. Ramachandran et al. 1981; Ho & Viskanta 1984; Thompson 
& Szekely 1988) have chosen to neglect most of the additional terms introduced 
by this transformation, including the pseudo-advective terms, as part of a pseudo- 
stationary approximation. This approximation significantly enhances convergence of 
the numerical scheme. Tests with the current model confirm that, except at very early 
times, these terms are indeed negligible when only the position of the solidification 
front is required. However, neglect of the pseudo-advective terms leads to significant 
numerical errors in the compositional flux at the solid/liquid interface. Hence, we 
retain the pseudo-advective terms in our present study, but neglect the interface 
curvature terms. 

The transformed parabolic advection-diffusion equations for the solid temperature, 
and for the fluid vorticity, temperature and composition, are solved using the Alter- 
nating Direction Implicit (ADI) method introduced by Peaceman & Rachford (1955), 
with upwinding for the advective terms. For the potentially expensive inversion 
V2y  = -0, we employ a multigrid method, as described by Sonneveld, Wesseling 
& de Zeeuw (1985). The equations were solved on an irregular mesh with 21 x 41 
grid points in the solid domain, and 65 x 41 grid points in the fluid domain. The 
dimensionless grid spacing in the fluid close to the solidification front is approximately 
3.3 x lop5, well within the expected thickness of the compositional boundary layer 
at mid-height. For constant-coefficient parabolic equations, the AD1 method is un- 
conditionally stable (Peyret & Taylor 1983), and the choice of timestep is determined 
by temporal accuracy in determining X .  Our initial timestep is At = which is 
steadily increased as the calculation progresses, whenever X A t  becomes smaller than 

The couplings inherent in the governing equations and boundary conditions are 
treated by performing a global iterative procedure at each timestep. Each equation 
is solved in turn as if all other variables are already known at the new timestep, 
including the solidification rate X ,  which is deduced from the dimensionless form 
of the interfacial thermal boundary condition (3.9). This procedure is then repeated 
until convergence at the new timestep is achieved. The global iteration also enables 
us to perform a third-order correction to the upwinded advective terms while solving 
the parabolic equations. The use of higher-order upwinding means that the total 
composition is typically conserved through an entire crystallization calculation to 
within 0.1%. Simple first-order upwinding only allows mass to be conserved to within 
5%. 

to a maximum value At = 2 x 
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The calculations are started at the dimensionless time t = from the similarity 
solution for the solidification of a binary alloy in the absence of convection, as 
described by Worster (1986), thereby avoiding the singularity in the solidification rate 
as t -+ 0. A typical calculation took approximately 10 cpu- hours on a DECStation 
5000. 
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